ixp
latest
false
- Introduction
- Setting up your account
- Balance
- Clusters
- Concept drift
- Coverage
- Datasets
- General fields
- Labels (predictions, confidence levels, label hierarchy, and label sentiment)
- Models
- Streams
- Model Rating
- Projects
- Precision
- Recall
- Annotated and unannotated messages
- Extraction Fields
- Sources
- Taxonomies
- Training
- True and false positive and negative predictions
- Validation
- Messages
- Access Control and Administration
- Manage sources and datasets
- Understanding the data structure and permissions
- Creating or deleting a data source in the GUI
- Uploading a CSV file into a source
- Preparing data for .CSV upload
- Creating a dataset
- Multilingual sources and datasets
- Enabling sentiment on a dataset
- Amending dataset settings
- Deleting a message
- Deleting a dataset
- Exporting a dataset
- Using Exchange integrations
- Model training and maintenance
- Understanding labels, general fields, and metadata
- Label hierarchy and best practices
- Comparing analytics and automation use cases
- Turning your objectives into labels
- Overview of the model training process
- Generative Annotation
- Dastaset status
- Model training and annotating best practice
- Training with label sentiment analysis enabled
- Training chat and calls data
- Understanding data requirements
- Train
- Introduction to Refine
- Precision and recall explained
- Precision and Recall
- How validation works
- Understanding and improving model performance
- Reasons for label low average precision
- Training using Check label and Missed label
- Training using Teach label (Refine)
- Training using Search (Refine)
- Understanding and increasing coverage
- Improving Balance and using Rebalance
- When to stop training your model
- Using general fields
- Generative extraction
- Using analytics and monitoring
- Automations and Communications Mining™
- Developer
- Exchange Integration with Azure service user
- Exchange Integration with Azure Application Authentication
- Exchange Integration with Azure Application Authentication and Graph
- Fetching data for Tableau with Python
- Elasticsearch integration
- Self-hosted Exchange integration
- UiPath® Automation Framework
- UiPath® Marketplace activities
- UiPath® official activities
- How machines learn to understand words: a guide to embeddings in NLP
- Prompt-based learning with Transformers
- Efficient Transformers II: knowledge distillation & fine-tuning
- Efficient Transformers I: attention mechanisms
- Deep hierarchical unsupervised intent modelling: getting value without training data
- Fixing annotating bias with Communications Mining™
- Active learning: better ML models in less time
- It's all in the numbers - assessing model performance with metrics
- Why model validation is important
- Comparing Communications Mining™ and Google AutoML for conversational data intelligence
- Licensing
- FAQs and more
Fetch comments from a stream (legacy)
Important :
Communications Mining is now part of UiPath IXP. Check the Introduction in the Overview Guide for more details.

Communications Mining user guide
Last updated Aug 1, 2025
Fetch comments from a stream (legacy)
/api/v1/datasets/<project>/<dataset_name>/streams/<stream_name>/fetch
/api/v1/datasets/<project>/<dataset_name>/streams/<stream_name>/fetch
- Bash
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "size": 8 }'
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "size": 8 }' - Node
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { size: 8 }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { size: 8 }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={"size": 8}, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/fetch", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={"size": 8}, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Response
{ "filtered": 6, "is_end_sequence": false, "results": [ { "comment": { "context": "1", "created_at": "2018-10-15T15:39:51.815000Z", "id": "0123456789abcdef", "last_modified": "2018-10-15T15:39:51.815000Z", "messages": [ { "body": { "text": "Hi Bob,\n\nCould you send me today's figures?" }, "from": "[email protected]", "sent_at": "2011-12-11T11:02:03.000000+00:00", "signature": { "text": "Thanks,\nAlice" }, "subject": { "text": "Today's figures" }, "to": ["[email protected]"] } ], "source_id": "18ba5ce699f8da1f", "text_format": "plain", "thread_id": "3c314542414538353242393446393", "timestamp": "2011-12-11T01:02:03.000000+00:00", "uid": "18ba5ce699f8da1f.0123456789abcdef", "user_properties": { "number:Participants": 2, "number:Position in Thread": 1, "number:Recipients": 1, "string:Folder": "Sent (/ Sent)", "string:Has Signature": "Yes", "string:Message ID": "<[email protected]>", "string:Sender": "[email protected]", "string:Sender Domain": "company.com", "string:Thread": "<[email protected]>" } }, "entities": [], "labels": [], "sequence_id": "qs8QcHIBAACuYzDeit-pwQdWGYGQImdy" }, { "comment": { "context": "1", "created_at": "2018-10-15T18:39:51.815000Z", "id": "abcdef0123456789", "last_modified": "2018-10-15T18:39:51.815000Z", "messages": [ { "body": { "text": "Alice,\n\nHere are the figures for today." }, "from": "[email protected]", "sent_at": "2011-12-11T11:02:03.000000+00:00", "signature": { "text": "Regards,\nBob" }, "subject": { "text": "RE: Today's figures" }, "to": ["[email protected]"] } ], "source_id": "18ba5ce699f8da1f", "text_format": "plain", "thread_id": "3c314542414538353242393446393", "timestamp": "2011-12-11T02:02:03.000000+00:00", "uid": "18ba5ce699f8da1f.abcdef0123456789", "user_properties": { "number:Participants": 3, "number:Position in Thread": 2, "number:Recipients": 2, "string:Folder": "Inbox (/ Inbox)", "string:Has Signature": "No", "string:Message ID": "[email protected]", "string:Sender": "[email protected]", "string:Sender Domain": "organisation.org", "string:Thread": "<[email protected]>" } }, "entities": [], "labels": [ { "name": ["Some Top-Level Label"], "probability": 0.8374786376953125 }, { "name": ["Another Top-Level Label", "Child Label"], "probability": 0.6164003014564514 } ], "sequence_id": "qs8QcHIBAADJ1p3W2FtmBB3QiOJsCJlR" } ], "sequence_id": "qs8QcHIBAADJ1p3W2FtmBB3QiOJsCJlR", "status": "ok" }
{ "filtered": 6, "is_end_sequence": false, "results": [ { "comment": { "context": "1", "created_at": "2018-10-15T15:39:51.815000Z", "id": "0123456789abcdef", "last_modified": "2018-10-15T15:39:51.815000Z", "messages": [ { "body": { "text": "Hi Bob,\n\nCould you send me today's figures?" }, "from": "[email protected]", "sent_at": "2011-12-11T11:02:03.000000+00:00", "signature": { "text": "Thanks,\nAlice" }, "subject": { "text": "Today's figures" }, "to": ["[email protected]"] } ], "source_id": "18ba5ce699f8da1f", "text_format": "plain", "thread_id": "3c314542414538353242393446393", "timestamp": "2011-12-11T01:02:03.000000+00:00", "uid": "18ba5ce699f8da1f.0123456789abcdef", "user_properties": { "number:Participants": 2, "number:Position in Thread": 1, "number:Recipients": 1, "string:Folder": "Sent (/ Sent)", "string:Has Signature": "Yes", "string:Message ID": "<[email protected]>", "string:Sender": "[email protected]", "string:Sender Domain": "company.com", "string:Thread": "<[email protected]>" } }, "entities": [], "labels": [], "sequence_id": "qs8QcHIBAACuYzDeit-pwQdWGYGQImdy" }, { "comment": { "context": "1", "created_at": "2018-10-15T18:39:51.815000Z", "id": "abcdef0123456789", "last_modified": "2018-10-15T18:39:51.815000Z", "messages": [ { "body": { "text": "Alice,\n\nHere are the figures for today." }, "from": "[email protected]", "sent_at": "2011-12-11T11:02:03.000000+00:00", "signature": { "text": "Regards,\nBob" }, "subject": { "text": "RE: Today's figures" }, "to": ["[email protected]"] } ], "source_id": "18ba5ce699f8da1f", "text_format": "plain", "thread_id": "3c314542414538353242393446393", "timestamp": "2011-12-11T02:02:03.000000+00:00", "uid": "18ba5ce699f8da1f.abcdef0123456789", "user_properties": { "number:Participants": 3, "number:Position in Thread": 2, "number:Recipients": 2, "string:Folder": "Inbox (/ Inbox)", "string:Has Signature": "No", "string:Message ID": "[email protected]", "string:Sender": "[email protected]", "string:Sender Domain": "organisation.org", "string:Thread": "<[email protected]>" } }, "entities": [], "labels": [ { "name": ["Some Top-Level Label"], "probability": 0.8374786376953125 }, { "name": ["Another Top-Level Label", "Child Label"], "probability": 0.6164003014564514 } ], "sequence_id": "qs8QcHIBAADJ1p3W2FtmBB3QiOJsCJlR" } ], "sequence_id": "qs8QcHIBAADJ1p3W2FtmBB3QiOJsCJlR", "status": "ok" }
Once a stream is created, it can be queried to fetch comments and their predicted labels and general fields. Below are some important aspects to keep in mind when fetching comments from a stream.