ixp
latest
false
- Introduction
- Setting up your account
- Balance
- Clusters
- Concept drift
- Coverage
- Datasets
- General fields
- Labels (predictions, confidence levels, label hierarchy, and label sentiment)
- Models
- Streams
- Model Rating
- Projects
- Precision
- Recall
- Annotated and unannotated messages
- Extraction Fields
- Sources
- Taxonomies
- Training
- True and false positive and negative predictions
- Validation
- Messages
- Access Control and Administration
- Manage sources and datasets
- Understanding the data structure and permissions
- Creating or deleting a data source in the GUI
- Uploading a CSV file into a source
- Preparing data for .CSV upload
- Creating a dataset
- Multilingual sources and datasets
- Enabling sentiment on a dataset
- Amending dataset settings
- Deleting a message
- Deleting a dataset
- Exporting a dataset
- Using Exchange integrations
- Model training and maintenance
- Understanding labels, general fields, and metadata
- Label hierarchy and best practices
- Comparing analytics and automation use cases
- Turning your objectives into labels
- Overview of the model training process
- Generative Annotation
- Dastaset status
- Model training and annotating best practice
- Training with label sentiment analysis enabled
- Training chat and calls data
- Understanding data requirements
- Train
- Introduction to Refine
- Precision and recall explained
- Precision and Recall
- How validation works
- Understanding and improving model performance
- Reasons for label low average precision
- Training using Check label and Missed label
- Training using Teach label (Refine)
- Training using Search (Refine)
- Understanding and increasing coverage
- Improving Balance and using Rebalance
- When to stop training your model
- Using general fields
- Generative extraction
- Using analytics and monitoring
- Automations and Communications Mining™
- Developer
- Exchange Integration with Azure service user
- Exchange Integration with Azure Application Authentication
- Exchange Integration with Azure Application Authentication and Graph
- Fetching data for Tableau with Python
- Elasticsearch integration
- Self-hosted Exchange integration
- UiPath® Automation Framework
- UiPath® Marketplace activities
- UiPath® official activities
- How machines learn to understand words: a guide to embeddings in NLP
- Prompt-based learning with Transformers
- Efficient Transformers II: knowledge distillation & fine-tuning
- Efficient Transformers I: attention mechanisms
- Deep hierarchical unsupervised intent modelling: getting value without training data
- Fixing annotating bias with Communications Mining™
- Active learning: better ML models in less time
- It's all in the numbers - assessing model performance with metrics
- Why model validation is important
- Comparing Communications Mining™ and Google AutoML for conversational data intelligence
- Licensing
- FAQs and more
Amending dataset settings

Communications Mining user guide
Last updated Aug 1, 2025
Note: You must have assigned the Dataset - Manage permission as
an Automation Cloud™ user, or the Modify datasets permission as a
legacy user.
To amend the settings of a dataset, proceed as follows:
- Select the ellipsis for a specific dataset from the homepage.
- Select Dataset Settings, which redirects you to the Settings page.
- Update the following dataset elements
in the Dataset tab:
- Dataset name
- Description
- Sources
- Use the toggle to enable or disable
the Use generative AI features option. The feature provides design-time and
run-time capabilities, which use third-party generative AI models. These
significantly improve time-to-value with features such as Generative
annotation.
Note: To disable third-party LLMs, make sure you turn off the Use Generative AI Features toggle for a dataset.
- Select Update.
Note:
- To update general fields, check Enabling, disabling, updating and creating general fields, and go to Taxonomy, then General fields.
- To modify labels or extraction fields, go to Taxonomy, then Labels and extraction fields.