ai-center
latest
false
UiPath logo, featuring letters U and I in white
AI Center
Automation CloudAutomation SuiteStandalone
Last updated Nov 19, 2024

TPOT XGBoost Regression

OS Packages > Tabular Data > TPOTXGBoostRegression

This model is a generic tabular data (numerical value only) regression model that needs to be retrained before being used for predictions. It relies on TPOT to automatically find the best model.

TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT automates the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data. Once TPOT is finished searching (or you get tired of waiting), it provides you with the Python code for the best pipeline it found so you can tinker with the pipeline from there. TPOT is built on top of scikit-learn, so all the code it generates should look familiar to scikit-learn users.

This version of TPOT uses only XGBoost and the standard set of pre-processing methods to optimize a machine learning pipeline.

Model details

Input type

JSON

Input description

Features used by the model to make predictions. For example: { “Feature1”: 12, “Feature2”: 222, ..., “FeatureN”: 110}

Output description

JSON with list of predictions

Example:

{ "predictions" : "[12, 12, 2, 354, 12, 2] }{ "predictions" : "[12, 12, 2, 354, 12, 2] }

Pipelines

All three types of pipelines (Full Training, Training and Evaluation) are supported by this package.

Dataset format

This ML Package will look for csv files in your dataset (not in subdirectories)

The csv files need to follow these two rules:

  • first row of the data must contain the header/column names.
  • all columns, must be numerical (int, float). The model is not able perform feature encoding however it is able to perform target encoding. If target encoding is performed by the model, at prediction time, the model also returns the label of the target variable.

Environment variables

  • max_time_mins: time to run the pipeline (in minutes). The longer the train time the better chances TPOT has at finding a good model. (default: 2)
  • target_column: name of the target column (default: “target”)
  • scoring: TPOT makes use of sklearn.model_selection.cross_val_score for evaluating pipelines, and as such offers the same support for scoring functions (default: “accuracy”). Uses standard scikit-learn scoring metrics (https://scikit-learn.org/stable/modules/model_evaluation.html)
  • keep_training: Typical TPOT runs will take hours to days to finish (unless it's a small dataset), but you can always interrupt the run partway through and see the best results so far. If keep_training is set to True, TPOT will continue the training where it left of
Note: If your file's target column is different than the default value (target), you need to update the target_column environment variable manually. You can do this in the Create new pipeline run window by clicking on the + Add new button in the Enter parameters section. In the Environment variable field add the variable (target_column) and in the Value field add the name of the column from your file. When finished, click the symbol.


Artifacts

TPOT exports the corresponding Python code for the optimized pipeline to a python file called “TPOT_pipeline.py”. Once the code finishes running, “TPOT_pipeline.py” will contain the Python code for the optimized pipeline.

Paper

The model is based on two publications:

Was this page helpful?

Get The Help You Need
Learning RPA - Automation Courses
UiPath Community Forum
Uipath Logo White
Trust and Security
© 2005-2024 UiPath. All rights reserved.